Mid-Point Quadrilaterals

Introduction:

In this learning unit, you will explore quadrilaterals formed by joining the midpoints of any given quadrilateral using the software GeoGebra. And you will also use Geogebra to make conjectures about special cases of quadrilaterals. And also prove them.

Sketch and Investigate

Open a new page in GeoGebra. Click on View and then on Axes to hide the axes. Only the algebra and graphics views should be visible.

Task 1:

Construct a quadrilateral ABCD using the Polygon Tool. To do this click on the **Polygon tool** and click the points in the following order: point *A*, point *B*, point *C*, point *D* and then point *A* to close the polygon. Note that GeoGebra labels the vertices with uppercase letters and the line segments with small case letters. Right click on each of the sides of the quadrilateral ABCD and select Show Label from the menu to hide the labels a,b,c and d of the sides.

Task 2:

Find the midpoints of the sides, AB, BC, CD and AD. Some of them are marked here. This can be done by selecting the Midpoint or Center icon from the Point Tool menu and then ^B clicking on the four sides of the quadrilateral ABCD. The midpoints will be labeled as E,F G and H respectively.

Vigyan Pratibha Learning Unit

Task 3:

Make the new quadrilateral by selecting the Polygon tool and then clicking on the points E,F G and H in that order . This will $^{\rm B}$ be called the midpoint quadrilateral.

By a mid-point quadrilateral we mean a quadrilateral formed F by joining all the midpoints of the sides of a given quadrilateral.

Task 4:

Drag the vertices of the original quadrilateral ABCD and observe what happens to the midpoint quadrilateral EFGH. Record your observations below.

Is there any similarity between all the mid-point quadrilaterals you got while dragging the vertices?

Note the lengths of the four sides of quadrilateral EFGH (which are marked as e, f, g and h) in the Algebra view. What do you observe? Now drag one of the vertices of the original quadrilateral ABCD. What are your observations regarding e, f, g and h? Based on the observations, what can you say about them?

Task 5:

What kind of quadrilateral do you think EFGH is? Use your observations to support you conjecture?

Task 6:

The diagonal AC divides the quadrilateral ABCD into two triangles. In each of these triangles one of the sides of the midpoint quadrilateral is a mid segment (segment joining the midpoints of the other two sides).

Use this information to validate the conjecture made by you.

©HBCSE

Vigyan Pratibha Learning Unit

Task 7:

Would you be able to make similar conjectures by considering the diagonal BD of quadrilateral ABCD instead of diagonal AC?

Task 8:

Observe the numbers associated to Poly1 (ABCD) and Poly2 (EFGH) in the Algebra view. Can you see a relationship between them?

From this, what can you say about the area of the midpoint quadrilateral EFGH in relation to the area of ABCD?

Task 9:

Prove your conjecture.

Task 10:

Draw the midpoint quadrilateral of EFGH? GeoGebra will label it as IJKL. What kind of a quadrilateral is IJKL? How is its area $\mbox{\tiny F}$ related to that of EFGH and ABCD?

Task 11:

Continue drawing midpoint quadrilaterals as you did in 8. Can you see how these midpoint quadrilaterals are related to each other?

Vigyan Pratibha Learning Unit

Task 12:

Using GeoGebra, draw a rectangle. Move the vertices of the rectangle you have drawn and check if the rectangle remains a rectangle. If not, draw again. Write down the steps you took to ensure that you have drawn a rectangle.

Task 13:

Draw a mid-point quadrilateral of this rectangle. What can you say about this mid-point quadrilateral? Can you prove your conjecture?

Task 14:

Using GeoGebra, draw a rhombus. Move the vertices of the rhombus you have drawn and check if the rhombus remains a rhombus. If not draw again.

Write down the steps you took to ensure that you have drawn a rhombus.

Task 15:

Draw a mid-point quadrilateral of this rhombus. What can you say about this mid-point quadrilateral? Can you prove your conjecture?

Task 16:

A square is both a rectangle and a rhombus. Then what can you say about the midpoint quadrilateral of a square.

References:

Lingefjärd, T., Ghosh, J, Kanhere, A. (2015). Students Solving Investigatory Problems with GeoGebra - A Study of Students' Work in India and Sweden. In S.J. Cho (Ed.), The Proceedings of the 12th International Congress on Mathematical Education

©HBCSE